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Quick Computation of [C], [L], [G], and [R] Matrices of

Multiconductor and Multilayered Transmission Systems

Gonzalo Plaza, Francisco Mesa, and Manuel Homo

Abstract-This paper presents a general scheme to compute the four
characteristic matrices, [C], [G], [L] and [R], of a mnftilayered and
multiconductor transmission tine with arbkrary cross section conductors

under quasi-TEM approach and strong skin effect regime. The conductors
are modeled as a set of infinitesimally thhr strips following the lkf-

strip model. An spectral domain approach (SDA) has been employed,

paying special attention to the efficient computation of the spectraf tails.
Conductor losses are considered via the incremental inductance rule

extended to the multiconductor case.

I. INTRODUCTION

The computation of the TEM (or quasi-TEM) parameters of

multiconductor transmission lines having arbitrary cross section con-

ductors embedded in a layered medium is basic for the design

and analysis of a variety of technological problems ranging from

microwave integrated/printed circuits to high speed interconnects.

Several methods have been gradually reported in the literature to

compute these parameters, although general treatments have been

only provided recently. Some of these general methods, following

different techniques, have been reported in [1]-[3] and [4]. In [5]

and [6] the authors proposed and developed the M-strips model

to analyze arbitrary cross section perfect conductors in a multilay-

ered medium without restriction on those dielectric and magnetic

properties compatible with the quasi-TEM approach.

In the present work, we present a new mixed spectraJ/spatial

domain approach to compute the characteristic matrices of transmis-

sion lines with arbitrarily cross section conductors (in laterally open

environment) using the kl-strips model. We have attained a good

numerical efficiency by combining the complex images technique [7]

with a nontrivial extension of the guide lines suggested in [8] to

evaluate the required inner products and convolutions and the use of

recurrence relationships [6]. We have also incorporated the study of

conductor losses under strong skin effect regime by computing the

resistance matrix via an extension of the incremental inductance rule

of Wheeler to a multiconductor line [9].

II. ANALYSIS

Following the Wstrip model [5], each original conductor with

arbitrary cross section is modeled as a set of infinitesimally thin

strips at the same potential and circumscribed to the contour of the
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original conductor. The corresponding spectral integral equation is

solved via the Galerkin’s method (using as spatial basis function the

Chebyshev’s polynomials weighed by the Maxwell’s distribution).

The spectral integrals appearing in the Galerkin’s matrix show the

following form

(1)

where the subscripts p and q are used to number the strips in the

model, wP(~) is the width of each strip; s = Cq – CP with CP(~1 being

the abscisa of their centers; J. is the Bessel function of order n and

G,J (k. ) is the spectral Green’s function for a source line at the jth

metallizated level (where qth strip is placed) and field points at the

ith level (where pth strip is placed).

Since the numerical efficiency of the SDA is strongly determined

by the fast and accurate computation of the spectral integrals, we

have paid an especial attention to accelerate its computation because

we face to a very slow convergence caused by extremely close strips.

We have used the asymptotic integration scheme shown in [6], where

the asymptotic behavior of the spectral Green’s function, G;, is now

expressed following the complex images technique [7]

(2)

Expansion (2) provides a very good fitting of the spectral Green’s

function and thus the integrals involving G – G- converge quickly.

In consequence, the efficiency of the proposed integration technique

lies basically in the computation of the integral tails. The generic

form, except for constants, of these integral tails is

J“
~(–#+J4&

1: = J. (ak. )Jm(bk. ) ~ dkz (3)
u z

where u is a suitable value to start using the asymptotic behavio~

a and b are the semiwidths of the strips; ~ = – Re (n) and

d = s + Im(fl) (Q stands for any of the complex exponents in (2)).

The new distance, d, can be seen as a modified distance between the

centers of the strips in the integraJs tails.

The integral tails (3) are computed by reversing them to the

spatial domain via Parseval’s theorem. The use of Parseval’s thec~rem

requires a previous extension of the tails from – N to +CO. ‘This

extension is readily made by multiplying the integrand in (3) by

the step function H(kx – u) and so, the following spatial domain

integral is obtained

/
~m =.in(-j)m 1 T.(7)

n T’ -, -J=

~[J1T~(n)

1-1 c@uc) ‘“ ‘7
(4)

where ~ = /3 + j (a q – bo – d). a and y appear after changing the

integration variable (both in the convolution integral in IJ- andl the

inner product integral in ~-) into the interval ( – 1.1 ) and El ( u <)

stands for the exponential integral function, which can be expanded

as shown in [10]. The convolution product in expression (4) might

be regarded as a complex potential originated by a strip of width 2b

(source-strip) over a second strip of width 2a (observer-strip) placed

at a height ~ above the first one, and with its center laterally separated

a distance d. We will express ourselves in these terms to simplify the

descriptions in the below analysis.
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Now, we consider separately the performance of the two integrals

appearing in (4). First, the convolution product (denoted by Cm(y)

from now on) is handled to extract analytically the possible singular-

ities. In accordance to the serie expansion of the exponential integral,

this convolution can be expressed as

Cm(v) = –(-y. + in u)7rc$mo – ~m(v) – S’m(y) (5)

with

(7)

where ye is the Euler’s constant and 6~~ is the delta of Kronecker.

The integrand of R~ (~) shows the proper form to be evaluated

by means of a Chebyshev’s quadrature, and 5-6 quadrature points

suffice if we choose u w 0.5 / max (a, b). Greater values of u are

not advisable because it would imply a greater number of quadrature

points.

The integrand of S~ (y) has a singularity when ,8 = d = O and
a = b (we refer to this case as the singular case). This situation

occurs when the integral S~ involves the effect of a strip over itself.

Nevertheless, the use of the Al-strips model makes the integrand of

S~ be quasi–singular even for different-strips cases since the strips

can overlap (Idl < a + b) and be very close (~ < a, b). Both cases,

the singular and quasi-singular ones, usually require a numerical

quadrature of an impracticable high order to give accuracy and

therefore it would be very desirable to find analytical expressions

for Sm (-f).

In the general nonsingular case (i.e., including the quasi-singular

case), analytical expressions for S~ (-y) can be obtained using com-

plex variable techniques

[

~(t– 1) ~mo _T:(l–6mo)
S.(7)= –j:+mln _

(1+ 77)’ 1
(8)

with ( = (d – ay + jfi)fb and q = –[ + ~~, where the sign

in the squared root must be chosen in such a way that Iq I <1. Once

the quasi-singularities have been treated, (3) can be rewritten as

with

J

+ ;(1 –tin,)

+ T)) d-r (lo)

‘=(d-H+l(d-T’92-1’11)
where the sign in the square root must be chosen in such a way that

Ipl <1. Analytical expressions for the singular case (B = d = O

and a = b) (except for integrals involving R~ ) can be obtained as

the limit of (9)–(11) when @ tends to zero. It should be noted that

TABLE I

MATRICES [C], [L] AND NORMALIZED RESISTANCE [R] /Rs FORA
TRANSMISSION LINE WITH Two RECTANGULAR CONDUCTORS

AND A CIRCULAR CONDUCTOR.DIMENSIONS OF THE LINE ARE
IN mm. R,: SURFACERESISTANCEOF THE CONDUCTORS

c, ~

(712

G’13

C2.2

C23

C33

LII

LIZ

L13

L22

L23

L33

Ref.[1]

124.4

-13.00

-68.25

33.40

-7.196

352.3

Ref. [1]

496.5

199.6

118.3

616.3

77.28

233,1

e,= 1

Ref. [2]

125.86

-13.125

-69.555

34.101

-7.1818

357.62

17his work

125.04

-12.960

-69.27

33.875

-7.2044

357.15

Ref.[2]

491.90

198.88

117.50

612.83

76.781

229.94

This work

494.81

199.17

117.84

615.55

77.04

230.21

This work

2454.9

110.1

-161.0

2338.6

-150.2

547.2

C’ij (pF/m)

Lij (nH/m)

rij = Rij/R. (l/m)

Yt

=,=09
(4,3,0,7) I~y=o,

@ diemeter=O.3

&,=6.8
x

spectral tails involving order higher than 1 can be evaluated starting

from I&’, I;, I! and 1: [6].

In expressions (9)–(11) for the nonsingular case, two different

types of integrals remain: 1) integrals involving Rm (~) and 2)

integrals involving ~~ (note that function q includes this

function), The first type of integrals can be accurately computed via

a Chebyshev’s quadrature, using the same criterion as previously

mentioned to compute R~ (~). In the second type of integrals, the

function’s slope of <~ presents abrupt changes at -yI,2 =

(d+ b)/a when the strips are very close @/b< 1. This means a

large number of quadrature points if any of these points of abrupt

change lies in the integration interval -y E (– 1, 1). When both

points of abrupt change belong to (– 1, 1), we can readily take them

out of the interval by interchanging the role of the strip:, that is,

choosing b as the semiwidth of the largest strip. For example, if/3 =

0.001, a = 0.5, b = 0.25 and d = O, approximately a 1600 points

Chebyshev’s quadrature would be necessary to get 5 significant digits.

Choosing now a = 0.25, b = 0.5, 8 significant digits are obtained
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TABLE II

VALUES OF THE CAPACITANCE COEFFICIENTSOF A TRANSMISSION LINE CONTAINING Two RECTANGULAR CONDUCTORSAS A FUNCTION OF THE NUMBER OF STIHRS
USED TO MODEL THE CONDUCTORS(N. ) AND THE NUMBER OF BASIS FUNCTIONS EMPLOYED TO EXPAND THE CHARGE DENSITY ON EACH STRIP

N,
=

2

4

6

8

10

12

14

16

18
—

C22

202,8

210.5

212.5

213.5

214.1

214.4

214.7

214.9

215.0

5

C12

-14.18

-15.15

-15.39

-15.51

-15.57

-15.61

-15.64

-15.66

-15.67

Cll

36.37

37.24

37.48

37.59

37.65

37.68

37.71

37.73

37.74

CPU

0.3

0.8

2.0

4.0

7.0

12

18

28

40

Number of Basis Functions

C22

202.8

210.5

212.5

213.5

214.1

214.5

214.8

215.0

215.1

7

C12

-14.18

-15.15

-15.39

-15:51

-15.58

-15.63

-15.66

-15.68

-15.70

Cll

36.37

37.24

37.48

37.60

37.67

37.71

37.74

37.77

37.78

Cij (pF/m) CPU (see)

+V
(-3,7) “ &,=l

CPU

0.4

1.1

2.5

5.6

9.6

18

25

36

52

LRef.[1]

Ref. [4]

y=5

9

C22

214.1

214.5

214.8

215.0

215.1

209.9

206.4

—.
Clz

-15.59

-15.63

-15.66

-15.69

-15.71.

-15.62

-15.50

Cll

37.67

37.72

37.75

37.78

37.79

36.51

35.21

CPU

0.5

1.3

2.9

7.0

13

22

34

50

68

x’

+

by means of an 8 points Chebyshev’s quadrature. When only one of

these points of abrupt change belongs to the integration interval, the

above solution does not apply (the point of abrupt change would

remain in the interval). Nevertheless, we can significantly reduce

the total number of quadrature points by dividing the integration

interval into two new integration intervals separated by the point

of abrupt change and then using a Gauss-Legendre’s quadrature in

each new interval. For instance, a Chebyshev’s quadrature, when

a = b = 0.,5, d = ().5, /3/a = 0.002, would require 2247 points to

obtain similar accuracy as that achieved with two Gauss-Legendre’s

quadrature of 80 points after dividing the interval.

III. NUMERICAL RESULTS

In this section, we present several numerical results obtained via

a computer code implemented according to the scheme proposed

above. First and for comparison, Table I shows our results in good

agreement with some results previously reported in [1] and [2]
for the capacitance and inductance elements of a three-conductors

transmission line containing a conductor of circular cross section. We

also report novel results about the normalized-resistance elements of

this structure. Our results in Table I were obtained modelling the

circular conductor by 15 thin strips, the rectangular conductors by

11, and using five basis functions for each thin strip.

After this first comparison, Table II shows a numerical study about

the convergence of our model with respect to the number of basis

functions and the number of thin strips, Ns, in each rectangular con-

ductors. An estimation of the CPU time consumed by a HP 90001730

work-station is also provided in Table II. It can be seen how the

different capacitance values converge properly as the number of basis

functions and thin strips increases, although the convergence with

respect to the the number of basis functions is more stable than with

respect to the number of thin strips. Nevertheless in the present case,

relative errors less than 1% are achieved just with eight thin strips for

each rectangular conductor. In many technological cases (i.e., those

concerning thick strips rather than rectangular bars or circular wires),

no more than threelfour thin strips would be usually required.

As a third example, we have computed the resistance of a rect-

angular conductor (2a x a) over a perfect conductor ground plane

at a distance a as that analyzed in [3, Table III]. In this case, our

result (r = aR/R.. = 0.23673) agrees very well with that reported

in [3] (r = 0.23753). We have modeled the rectangular conductor

by 15 thin strip and the charge density was expanded into 5 basis

functions. The resistance is then computed applying the incremental

inductance rule. The good agreement between the results highlights

the suitability of the M-strips model to compute conductor losses

under strong skin effect.
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IV. CONCLUSION

We have presented a semi-analytical analysis of general mtdtilay-

ered mtrlticonductor transmission lines with arbitrary cross section

conductors using the M-strips model. This procedure has proved

its ability to compute in a fast and accurate way the characteristic

matrices of the analyzed transmission lines. It has been also shown

how the M-strip model combined with the Wheeler’s incremental

inductance rule yields sufficiently accurate results for the conductor

losses assuming strong skin effect. The studied examples have shown

that rectangular conductors and even circular conductors can be

efficiently modeled with a reasonable number of thin strips. This

latter fact and the enhanced numerical treatment here applied suggests

that our scheme may be used as a good basis for CAD of general

transmission lines.
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A Numerical Method of Evaluating Electromagnetic

Fieldsin aGeneralized Anisotropic Medium

Hung-Yu Yang

Abstract-A transition matrix method is commonly used to deal with
the problems of either plane-wave scattering from or the Green’s function
of a generalized anisotropic medium. This method, although rigorous ana-
lytically, introduces numerical breakdown, when the layers are electrically
thick and the waves are evanescent. A variable transformation method
is developed to deal with the exponentially-growing terms associated

with exponential-matrix method. Theproposed scheme issuitable for the

numerical analysis of generalized anisotropic layers including ferrites,
magneto-plasmas, chiral layers, and bianistropic layers.

I. INTRODUCTION

In the past, there have been considerable interest in the investi-

gation of the interaction of electromagnetic waves with anisotropic

materials. The classical formulation for antennas on layered media

employing a combination of TE and TM vector potential functions

limits the applications to isotropic or uniaxial media. In recent

years, the interest in the technology of printed circuit elements on

anisotropic substrates has stirred the investigation of electromagnetic

waves interaction with generalized anisotropic layered media, A

spec~al exponential 4 x 4 ma~ix method has been developed
to deal with embedded dipoles in or scattering from a layered

generalized anisotropic structure [1]–[6]. The exponential matrix

method is a useful numerical method in dealing with waves in

media with arbitrary anisotropy. There, the derivation of analytic

form of waves is often complicate and tedious if not impossible.

Most published research in the area of electromagnetic waves in

layered anisotropic media dealt with the analytic aspect of the

problem. The full-wave numerical implementation of the spectral

matrix method has been applied for microstrip transmission-lines

[7]-[9] and for printed antennas [10]. [11]. A critical step in the

exponential-matrix method is to develop the transition matrices which

relate the electromagnetic fields at one planar interface to the others.

This method although elegant analytically has inherent deficiency

in the numerical implementation. Problems arise when the wave

numbers in the direction of inhomogeneity are complex-valued. If the

layers are electrically thick enough, the transition matrices become

numerically singular andcanno longer pass the complete information

of fields. The physical explanation is that from one layer interface to

another, part of the waves die out before reaching the interface. The

remaining propagating waves are degenerate.

As aresult, the4 x 4transition matrix is singular. This problem

is particularly serious in dealing with antennas and circuits on

anisotropic media, where the plane wave representations of fields

always include the evanescent plane wave spectrum. This numeri-

cal singularity (or overflow) problem occurs often in dealing with

isotropic or uniaxial media, where the problem is overcome in the

analytic formulation, by normalizing the variables such that we deal

with the “tanh” functions instead of the “cosh” or’’sinh” functions.

In this paper, a scheme utilizing variable transformation is de-

veloped. The idea is to extract the large exponential terms in
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