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Quick Computation of [C],[L], [G], and [R] Matrices of
Multiconductor and Multilayered Transmission Systems

Gonzalo Plaza, Francisco Mesa, and Manuel Horno

Abstract—This paper presents a general scheme to compute the four
characteristic matrices, [C].[G],[L] and [R], of a multilayered and
multiconductor transmission line with arbitrary cress section conductors
under quasi-TEM approach and strong skin effect regime. The conductors
are modeled as a set of infinitesimally thin strips following the M-
strip model. An spectral domain approach (SDA) has been employed,
paying special attention te the efficient computation of the spectral tails.
Conductor losses are considered via the incremental inductance rule
extended to the multiconductor case.

I. INTRODUCTION

The computation of the TEM (or quasi-TEM) parameters of
multiconductor transmission lines having arbitrary cross section con-
ductors embedded in a layered medium is basic for the design
and analysis of a variety of technological problems ranging from
microwave integrated/printed circuits to high speed interconnects.
Several methods have been gradually reported in the literature to
compute these parameters, although general treatments have been
only provided recently. Some of these general methods, following
different techniques, have been reported in [1]-[3] and [4]. In [5]
and [6] the authors proposed and developed the M -strips model
to analyze arbitrary cross section perfect conductors in a multilay-
ered medium without restriction on those dielectric and magnetic
properties compatible with the quasi-TEM approach.

In the present work, we present a new mixed spectral/spatial
domain approach to compute the characteristic matrices of transmis-
sion lines with arbitrarily cross section conductors (in laterally open
environment) using the M -strips model. We have attained a good
numerical efficiency by combining the complex images technique [7]
with a nontrivial extension of the guide lines suggested in [8] to
evaluate the required inner products and convolutions and the use of
recurrence relationships [6]. We have also incorporated the study of
conductor losses under strong skin effect regime by computing the
resistance matrix via an extension of the incremental inductance rule
of Wheeler to a multiconductor line [9].

II. ANALYSIS

Following the M -strip model [5], each original conductor with
arbitrary cross section is modeled as a set of infinitesimally thin
strips at the same potential and circumscribed to the contour of the
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original conductor. The corresponding spectral integral equation is
solved via the Galerkin’s method (using as spatial basis function the
Chebyshev’s polynomials weighed by the Maxwell’s distribution).
The spectral integrals appearing in the Galerkin’s matrix show the
following form

+oo
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where the subscripts p and ¢ are used to number the strips in the
model, wy(yy is the width of each strip; s = ¢ — ¢, with ¢p(4) being
the abscisa of their centers; .J,, is the Bessel function of order n and
G.;(k:) is the spectral Green’s function for a source line at the jth
metallizated level (where gth strip is placed) and field points at the
tth level (where pth strip is placed).

Since the numerical efficiency of the SDA is strongly determined
by the fast and accurate computation of the spectral integrals, we
have paid an especial attention to accelerate its computation because
we face to a very slow convergence caused by extremely close strips.
We have used the asymptotic integration scheme shown in [6], where

the asymptotic behavior of the spectral Green’s function, G}, is now
expressed following the complex images technique [7]
N
gy o exp(Q7 k)
G (k) = nz_:l A= @)

Expansion (2) provides a very good fitting of the spectral Green’s
function and thus the integrals involving G — G*° converge quickly.
In consequence, the efficiency of the proposed integration technique
lies basically in the computation of the integral tails. The generic
form, except for constants, of these integral tails is

(=B+1Dks
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where u is a suvitable value to start using the asymptotic behavior;
a and b are the semiwidths of the strips; / = —Re(f2) and
d = s +Im()) (Q stands for any of the complex exponents in (2)).
The new distance, d, can be seen as a modified distance between the
centers of the strips in the integrals tails.

The integral tails (3) are computed by reversing them to the
spatial domain via Parseval’s theorem. The use of Parseval’s theorem
requires a previous extension of the tails from —oo to +oc. This
extension is readily made by multiplying the integrand in (3) by
the step function H(k, — u) and so, the following spatial domain
integral is obtained

PO ) Ly L X0
7 T2 _1 /1 _ 72
Y T(a)
. [ i \/i——_——(;QzEl(UC) da:l dn @

where { = 7+ j(ay — ba — d). o and ~ appear after changing the
integration variable (both in the convolution integral in o~ and the
inner product integral in ~-) into the interval (—1.1) and F1{u()
stands for the exponential integral function, which can be expanded
as shown in [10]. The convolution product in expression (4) might
be regarded as a complex potential originated by a strip of width 2b
(source-strip) over a second strip of width 2a (observer-strip) placed
at a height 3 above the first one, and with its center laterally separated
a distance d. We will express ourselves in these terms to simplify the
descriptions in the below analysis.
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Now, we consider separately the performance of the two integrals
appearing in (4). First, the convolution product (denoted by Cr.(7y)
from now on) is handled to extract analytically the possible singular-
ities. In accordance to the serie expansion of the exponential integral,
this convolution can be expressed as

Cn(7) =~ +In w)Tbmo = B (7) = Sm(v)  (5)
with
_ (<u0)*
Rut= [ 2 m Z ue ©
Sm= [ 49 156 da @
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where . is the Euler’s constant and 6., is the delta of Kronecker.
The integrand of R..(v) shows the proper form to be evaluated
by means of a Chebyshev’s quadrature, and 5-6 quadrature points
suffice if we choose v ~ 0.5/ max(a,b). Greater values of v are
not advisable because it would imply a greater number of quadrature
points.

The integrand of S..(v) has a singularity when § = d = 0 and
a = b (we refer to this case as the singular case). This situation
occurs when the integral S, involves the effect of a strip over itself.
Nevertheless, the use of the M -strips model makes the integrand of
S be quasi—singular even for different-strips cases since the strips
can overlap (|d| < a + b) and be very close (§ < a,b). Both cases,
the singular and quasi-singular ones, usually require a numerical
quadrature of an impracticable high order to give accuracy and
therefore it would be very desirable to find analytical expressions
for S (7).

In the general nonsingular case (i.e., including the quasi-singular
case), analytical expressions for Sy, () can be obtained using com-
plex variable techniques

L U~ 1)

®

with £ = (d— ay+ j3)/b and n = — £ /€2 — 1, where the sign
in the squared root must be chosen in such a way that |»| < 1. Once
the quasi-singularities have been treated, (3) can be rewritten as
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where the sign in the square root must be chosen in such a way that
lpl < 1. Analytical expressions for the singular case (4 = d = 0
and a = b) (except for integrals involving R,.) can be obtained as
the limit of (9)—(11) when ( tends to zero. It should be noted that
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TABLE I
Matrices [C], [L] AND NORMALIZED RESISTANCE [R]/R, FOR A
TRANSMISSION LINE WiTH TWO RECTANGULAR CONDUCTORS
AND A CIRCULAR CONDUCTOR. DIMENSIONS OF THE LINE ARE
IN mm. R,: SURFACE RESISTANCE OF THE CONDUCTORS

Ref.[1] | Ref.[2] | This work This work
Ci | 1244 | 125.86 125.04 ™ 2454.9
Ciz | -13.00 | -13.125 -12.960 T12 110.1
Ciz | -68.25 | -69.555 -69.27 13 -161.0
Cos | 33.40 | 34.101 33.875 T92 2338.6
Coz | -7.196 | -7.1818 -7.2044 r93 -150.2
Css | 352.3 | 357.62 | 357.15 ras | 547.2
Ref.[1] | Ref.[2] | This work
Lii | 4965 | 491.90 | 494.81 Ci; (pF/m)
Liz | 199.6 | 198.88 199.17
L | 1183 |117.50 | 117.84 Li; (nH/m)
Ly | 616.3 | 612.83 615.55
Lys | 77.28 | 76781 | 77.04 rij = Rij/Ro (1/m)
Lz | 233.1 | 229.94 230.21
yl\
©.1.13.1) @
e=1 :
©3,1) 0.9
(0.30.7)
g=4.5 D |
(-0.1,0.6)
y=0.5
©.0.4)
diameter=0.3

spectral tails involving order higher than 1 can be evaluated starting
from I3, 18,19 and I} [6].

In expressions (9)-(11) for the nonsingular case, two different
types of integrals remain: 1) integrals involving R.,(v) and 2)
integrals involving /(1 — £2) (note that function n includes this
function). The first type of integrals can be accurately computed via
a Chebyshev’s quadrature, using the same criterion as previously
mentioned to compute R, (7). In the second type of integrals, the
function’s slope of /(1 — £2) presents abrupt changes at 12 =
(d £ b)/a when the strips are very close 3/b< 1. This means a
large number of quadrature points if any of these points of abrupt
change lies in the integration interval v € (—1,1). When both
points of abrupt change belong to (—1,1), we can readily take them
out of the interval by interchanging the role of the strips, that is,
choosing b as the semiwidth of the largest strip. For exampfe, if 8=
0.001,¢ = 0.5, = 0.25 and d = 0, approximately a 1600 points
Chebyshev’s quadrature would be necessary to get 5 significant digits.
Choosing now a = 0.25,b = 0.5, 8 significant digits are obtained
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TABLE II
VALUES OF THE CAPACITANCE COEFFICIENTS OF A TRANSMISSION LINE CONTAINING TW0O RECTANGULAR CONDUCTORS AS A FUNCTION OF THE NUMBER OF STRIPS
UsED To MODEL THE CONDUCTORS (V) AND THE NUMBER OF BAsIS FUNCTIONS EMPLOYED To EXPAND THE CHARGE DENSITY ON EACH STRIP

Number of Basis Functions
5 7 9

N | Cn | Cu | CucPu] cn | o | Ou | CPU | Cu| Cu | Cu[cPU
2 [ 202.8 |-14.18 | 36.37 | 0.3 | 202.8 | -14.18 | 36.37 | 0.4 - - - | o5
4 |1 2105 |-15.15 [ 37.24 | 0.8 | 2105 |-15.15 |37.24 | 1.1 - - BEERE
6 | 212.5 | -15.39 | 37.48 | 2.0 || 212.5 | -15.39 | 37.48 | 2.5 - - - | 29
8 | 213.5 | -15.51 | 37.59 | 4.0 || 213.5 | -15.51 | 37.60 | 5.6 . - - |70
10 || 214.1 | -15.57 | 37.65 | 7.0 | 214.1 {-15.58 | 37.67 | 9.6 | 214.1|-15.59 | 37.67 | 13
12 || 214.4 | -15.61 | 37.68 | 12 | 2145 |-15.63 |37.71 | 18 | 2145 |-15.63 | 37.72 | 22
14 || 214.7 | -15.64 | 37.71 | 18 | 214.8 |-15.66 | 37.74 | 25 | 214.8 |-15.66 | 37.75 | 34
16 || 214.9 | -15.66 | 37.73 | 28 | 215.0 | -15.68 | 37.77 | 36 | 215.0 | -15.69 | 37.78 | 50
18 || 215.0 | -15.67 | 37.74 | 40 || 2151 {-15.70 | 37.78 | 52 || 215.1 | -15.71 | 37.79 | 68

Ref.[1] || 209.9 | -15.62 | 36.51

Ci; (pF/m)  CPU (sec) Ref.[4] || 206.4 | -15.50 | 35.21

(-3,7) y e=1

by means of an 8 points Chebyshev’s quadrature. When only one of
these points of abrupt change belongs to the integration interval, the
above solution does not apply (the point of abrupt change would
remain in the interval). Nevertheless, we can significantly reduce
the total number of quadrature points by dividing the integration
interval into two new integration intervals separated by the point
of abrupt change and then using a Gauss-Legendre’s quadrature in
each new interval. For instance, a Chebyshev’s quadrature, when
a=1"0=05d=0.5,3/a = 0.002, would require 2247 points to
obtain similar accuracy as that achieved with two Gauss-Legendre’s
quadrature of 80 points after dividing the interval.

III. NUMERICAL RESULTS

In this section, we present several numerical results obtained via
a computer code implemented according to the scheme proposed
above. First and for comparison, Table I shows our results in good
agreement with some results previously reported in [1] and [2]
for the capacitance and inductance elements of a three-conductots
transmission line containing a conductor of circular cross section. We
also report novel results about the normalized-resistance elements of
this structure. Our results in Table I were obtained modelling the
circular conductor by 15 thin strips, the rectangular conductors by
11, and using five basis functions for each thin strip.

After this first comparison, Table II shows a numerical study about
the convergence of our model with respect to the number of basis
functions and the number of thin strips, Vs, in each rectangular con-
ductors. An estimation of the CPU time consumed by a HP 9000/730
work-station is also provided in Table II. It can be seen how the
different capacitance values converge properly as the number of basis
functions and thin strips increases, although the convergence with
respect to the the number of basis functions is more stable than with
respect to the number of thin strips. Nevertheless in the present case,
relative errors less than 1% are achieved just with eight thin strips for
each rectangular conductor. In many technological cases (i.e., those
concerning thick strips rather than rectangular bars or circular wires),
no more than three/four thin strips would be usually required.

As a third example, we have computed the resistance of a rect-
angular conductor (2a X a) over a perfect conductor ground plane
at a distance a as that analyzed in [3, Table III]. In this case, our
result (r = aR/R. = 0.23673) agrees very well with that reported
in [3] (r = 0.23753). We have modeled the rectangular conductor
by 15 thin strip and the charge density was expanded into 5 basis
functions. The resistance is then computed applying the incremental
inductance rule. The good agreement between the results highlights
the suitability of the M -strips model to compute conductor. losses
under strong skin effect.
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IV. ConcLUsION

We have presented a semi-analytical analysis of general multilay-
ered multiconductor transmission lines with arbitrary cross section
conductors using the M -strips model. This procedure has proved
its ability to compute in a fast and accurate way the characteristic
matrices of the analyzed transmission lines. It has been also shown
how the A -strip model combined with the Wheeler’s incremental
inductance rule yields sufficiently accurate results for the conductor
losses assuming strong skin effect. The studied examples have shown
that rectangular conductors and even circular conductors can be
efficiently modeled with a reasonable number of thin strips. This
latter fact and the enhanced numerical treatment here applied suggests
that our scheme may be used as a good basis for CAD of general
transmission lines.
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A Numerical Method of Evaluating Electromagnetic
Fields in a Generalized Anisotropic Medium

Hung-Yu Yang

Abstract—A transition matrix method is commonly used to deal with
the problems of either plane-wave scattering from or the Green’s function
of a generalized anisotropic medium. This method, although rigorous ana-
Iytically, introduces numerical breakdown, when the layers are electrically
thick and the waves are evanescent. A variable transformation method
is developed to deal with the exponentially-growing terms associated
with exponential-matrix method. The proposed scheme is suitable for the
numerical analysis of generalized anisotropic layers including ferrites,
magneto-plasmas, chiral layers, and bianistropic layers.

I. INTRODUCTION

In the past, there have been considerable interest in the investi-
gation of the interaction of electromagnetic waves with anisotropic
materials. The classical formulation for antennas on layered media
employing a combination of TE and TM vector potential functions
limits the applications to isotropic or uniaxial media. In recent
years, the interest in the technology of printed circuit elements on
anisotropic substrates has stirred the investigation of electromagnetic
waves interaction with generalized anisotropic layered media. A
spectral exponential 4 x 4 matrix method has been developed
to deal with embedded dipoles in or scattering from a layered
generalized anisotropic structure [1]-[6]. The exponential matrix
method is a useful numerical method in dealing with waves in
media with arbitrary anisotropy. There, the derivation of analytic
form of waves is often complicate and tedious if not impossible.
Most published research in the area of electromagnetic waves in
layered anisotropic media dealt with the analytic aspect of the
problem. The full-wave numerical implementation of the spectral
matrix method has been applied for microstrip transmission-lines
[71-19] and for printed antennas [10], [11]. A critical step in the
exponential-matrix method is to develop the transition matrices which
relate the electromagnetic fields at one planar interface to the others.
This method although elegant analytically has inherent deficiency
in the numerical implementation. Problems arise when the wave
numbers in the direction of inhomogeneity are complex-valued. If the
layers are electrically thick enough, the transition matrices become
numerically singular and can no longer pass the complete information
of fields. The physical explanation is that from one layer interface to
another, part of the waves die out before reaching the interface. The
remaining propagating waves are degenerate.

As a result, the 4 x 4 transition matrix is singular. This problem
is particularly serious in dealing with antennas and circuits on
anisotropic media, where the plane wave representations of fields
always include the evanescent plane wave spectrum. This numeri-
cal singularity (or overflow) problem occurs often in dealing with
isotropic or uniaxial media, where the problem is overcome in the
analytic formulation, by normalizing the variables such that we deal
with the “tanh” functions instead of the “cosh” or “sinh™ functions.

In this paper, a scheme utilizing variable transformation is de-
veloped. The idea is to extract the large exponential terms in
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